مقایسه کارایی پیش بینی دبی ماهانه با استفاده از روش های شبکه عصبی مصنوعی و سری های زمانی
نویسندگان
چکیده
پیشبینی در هیدرولوژی به معنی تخمین شرایط هیدرولوژیکی و هواشناسی در یک بازه زمانی خاص میباشد. در همین راستا، فهم رابطه بین بارش و رواناب یکی از ضروری ترین مسائل برای مدیریت منابع آب می باشد. پژوهش حاضر با هدف مقایسه بین مدل های مختلف شبکه عصبی مصنوعی (mlp وrbf) و سری های زمانی آرما (arma) در برآورد دبی ماهانه در حوزه آبخیز طالقان برای یک دوره 30ساله بین سال های 1356 تا 1386 پیریزی شد. در روش شبکه عصبی مصنوعی از توابع محرک سیگموئیدی و پارامترهای تعداد تکرار، ضریب یادگیری، تعداد نرون مخفی و خطای هدف که با استفاده از آزمون و خطا بهدست آمده، استفاده شد. همچنین، در روش آرما از بین مدل های مختلف روشی که دارای کمترین میزان خطا و معیار سنجش آکائیک (aic) بود بهعنوان مدل بهینه انتخاب شد. نتایج مدل سازی سریهای زمانی با استفاده از مدل های آنالیز روند، هالت وینترز و باکس-جنکینز (آرما) حاکی از دقت بیشتر مدل های آرما (2 و 2) (r=0.77) و هالت وینترز (r=0.72) بوده است. در مقایسه بین مدل های شبکه عصبی مصنوعی، مدل mlp با میانگین ضریب هم بستگی 0.83 نسبت به مدل rbf با میانگین ضریب هم بستگی 0.81 دقت بیشتری در پیش بینی دبی نشان داده است. در مجموع دقت سنجی مدل ها براساس آماره های ریشه میانگین مربعات خطا و ضریب هم بستگی حاکی از دقت بیشتر شبکه عصبی مصنوعی (ann) نسبت به مدل های سری زمانی (arma) می باشد. همچنین، ارزیابی دقت در مدل های مختلف حاکی از دقت بیشتر مدل یک (r=0.86 و rmse=6.45) با ورودی های دبی یک ماه تا چهار ماه قبل بوده است. بهترین معماری در روش شبکه عصبی مصنوعی نوع mlp، مدل شماره 1 با آرایش 1-20-4 بهترتیب با چهار نرون در لایه ورودی، 20 نرون در لایه مخفی و یک نرون در لایه خروجی شناخته شد.
منابع مشابه
مقایسه کارایی پیشبینی دبی ماهانه با استفاده از روشهای شبکه عصبی مصنوعی و سریهای زمانی
پیشبینی در هیدرولوژی به معنی تخمین شرایط هیدرولوژیکی و هواشناسی در یک بازه زمانی خاص میباشد. در همین راستا، فهم رابطه بین بارش و رواناب یکی از ضروریترین مسائل برای مدیریت منابع آب میباشد. پژوهش حاضر با هدف مقایسه بین مدلهای مختلف شبکه عصبی مصنوعی (MLP وRBF) و سریهای زمانی آرما (ARMA) در برآورد دبی ماهانه در حوزه آبخیز طالقان برای یک دوره 30ساله بین سالهای 1356 تا 1386 پیریزی شد. در روش ...
متن کاملکاربردهای شبکه های عصبی در پیش بینی سری های زمانی
استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...
متن کاملپیش بینی قیمت جوجه یکروزه گوشتی در ایران با استفاده از شبکه عصبی مصنوعی و مدل های سری زمانی
متن کامل
مقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران
با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی زمانی1371:1 تا 1385:11 بوده و از شر...
متن کاملاستفاده از مدل های سری زمانی، شبکه عصبی و ماشین بردار پشتیبان جهت پیش بینی دبی ورودی به سد گرگان
پیشبینی مقادیر جریان ورودی به سیستم منابع آب بهمنظور آگاهی از شرایط آینده و برنامهریزی برای تخصیص بهینه منابع آب به بخشهای مختلف از قبیل شرب، کشاورزی و صنعتی امری ضروری در مدیریت منابع آب میباشد. هدف از پژوهش حاضر پیشبینی مقادیر دبی ماهانه ورودی به سد گرگان برای آینده بود. بدین منظور از دادههای هیدرومتری ایستگاه قزاقلی با دوره آماری 47 سال و سه مدل سریزمانی، شبکه عصبی و ماشین بردار پشت...
متن کاملپیش بینی تورم ایران با استفاده از مدل های ساختاری ، سری های زمانی و شبکه های عصبی
امروزه ، پیش بینی متغیر های کلان اقتصادی از اهمیت ویژه ای برای سیاستگذاران و سایر واحد های اقتصادی برخوردار است. در نتیجه ، دردهه های اخیر ، مدل های پیش بینی گوناگونی توسعه یافته و به رقابت با یکدیگر پرداخته اند. اخیراً به موازات مدل های متداول قبلی مانند مدل های ساختاری و سری زمانی ، مدل های دیگری تحت عنوان شبکه های عصبی مصنوعی در زمینه پیش بینی متغیر های مالی و پولی بکار گرفته شده اند. این م...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
مهندسی و مدیریت آبخیزناشر: پژوهشکده حفاظت خاک و آبخیزداری
ISSN 2251-9300
دوره 5
شماره 2 2013
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023